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Abstract. In this paper, the definition of supernormality for convex cones in locally convex spaces is 
discussed in detail on many interesting examples. Starting from the new direction for the study of the 
existence of efficient points (Pareto type optimums) in locally convex spaces offered by the concept of 
supernormal (nuclear) cone, we establish some existence results for the efficient points using 
boundedness and completeness of conical sections induced by non-empty subsets and we specify 
properties for the sets of efficient points beside important remarks 
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1. Introduction 

It is well known that in the decision or game theories the vectorial optimization is 
more appropriate than the strong optimization. Moreover, the vectorial optimiza- 
tion programs are very useful in multiobjective control problems for Pareto type 
optimality. These are the reasons to present in this paper which is in connection 
with the main directions of research concerning with the vectorial optimization 
(existence conditions for optimums and duality, the study of properties for sets of 
efficient points and the elaboration of numerical methods especially for nonlinear 
vectorial optimization problems) suggestive examples for supernormal cones with 
an examination of supernormality in H-locally convex spaces, existence results for 
efficient points in locally convex spaces ordered by cones such as these, properties 
of sets of efficient points and related important remarks. At the same time, the 
following theorems show that the supernormality is a reasonable restriction on 
convex cones in order to avoid the compactness assumption imposed usually upon 
the objective sets because it together with proper conditions on conical (exten- 
sions) sections of non-empty sets ensure the existence for the efficient points in 
locally convex spaces. Thus, the use of supernormal cones for the study of the 
existence of efficient points is a new direction for the investigations of Pareto type 
optimums in infinite dimensional spaces, especially in locally convex spaces, 
which, in general, have unknown geometry (and, consequently, there are not 
geometrical interpretations for the structure of efficient points sets) since it is 

Journal o f  Global Optimization 3: 233-242, 1993. 
�9 1993 Kluwer Academic Publishers. Printed in the Netherlands. 



234 VASILE POSTOLICA 

based on completeness instead of compactness or of the usual assumption that the 
cones have non-empty interiors. 

All the elements of ordered topological vector spaces used in this work are in 
accordance with [14]. 

2. Supernormal Cones and Related Topics 

Let  X be a Hausdorff  locally convex spaces with the topology induced by a family 
= {p~ : a E I )  of seminorms, ordered by a convex cone K and its topological 

dual space X'. Before we give the main examples, comments and results of this 
section, we recall a basic definition and an important theorem. 

D E F I N I T I O N  2.1. [7]. K is said to be supernormal (nuclear) if for every p~ E ~ ,  
there exists f~ C X '  so that p~ (x) ~< f~ (x) for all x E K. 

T H E O R E M  2.1. [1]. In a Hausdorf f  locally convex space a convex and normal 

cone K is supernormal i f  and only i f  every generalized sequence o f  K weakly 

convergent to zero converges to zero in the locally convex topology. 

EX AMP LES .  
1. Any convex, closed and pointed cone in an arbitrary usual Euclidean space 

R x is supernormal. 

2. In every locally convex space any well based convex cone (i.e., generated by 
a convex, bounded set which does not contain the origin in the closure) is 
supernormal. 

3. In a normed space, a convex cone is supernormal if and only if it is well 
based. 

4. In a locally convex space, every locally compact (weakly locally compact) 
convex cone is supernormal. 

5. In a nuclear space [13] a convex cone is supernormal iff it is normal. 
6. In a locally convex space a convex cone is weakly supernormal if and only if is 

weakly normal. 
7. In LP([a, b]) ( p  ~> 1) the convex cone Kp = {x E LP([a, b]): X(t )  >! 0 almost 

everywhere} is supernormal if and only if p = 1, being well based in this case 
by set 

b 

a 

Indeed,  if p > 1, then the sequence (xn) defined by 

nil p a<~t<~a+ b - a  
' 2 n  x , ( t )  = b - a 

O, a +  ~n  < t < - b  
, n E N *  
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converges to zero in the weak topology but not in the usual norm topology. 

Therefore ,  by virtue of Theorem 2.1, Kp is not supernormal. A similar result 
holds for LP(R) .  Thus, if we consider a countable family (An) of disjoint sets 
which covers R such that ~ (An)  = 1, for all n in N, where/~ is the Lebesgue 
measure,  then the sequence (yn) given by yn(t) = 1 if t C  A n and yn(t) = 0 for 
t ~ R \ A  n converges weakly to zero while it is not convergent to zero in the 
norm topology. Taking into account the above theorem, it follows that the 
usual cone in LP(R)  is not supernormal i f p  > 1, that is, it is not well based in 
these cases. However ,  these cones are normal for every p >/1. 

8. In I p (p>~ 1) equipped with the usual norm II'[IP the positive cone Cp = 
{(in)  E lP: X n >1 0 for all n E N} is also normal with respect to the usual n o r m  
topology but it is not supernormal excepting the case p = 1. Indeed, for every 
p > 1, the sequence (en) having 1 on the nth coordinate and zeros elsewhere 
converges to zero in the weak topology but not in the norm topology and by 
virtue of Theorem 2.1 it follows that Cp is not supernormal. For p = 1, Cp is 
well based by the set B = {x E C1:[IxII1 = 1} and by Proposition 5 of [8] it is 
supernormal.  If we consider in this case the locally convex topology in l a 
defined by the seminorms 

p, ( (x~)  = ~ [x~l for every (xk) in l 1 and n E N * ,  
k = 0  

which is weaker than its usual weak topology, then the usual positive cone 
remains supernormal with respect to this topology (now it is normal in a 
nuclear space and we apply Proposition 6 of [8]) but it is not well based (see 
also Example IV.3.3 given in Chapter 4 of [1]). Taking into account the 
concept of H-locally convex space introduced by T. Precupanu in [17] and 
defined as a Hausdorff  locally convex space with the seminorms satisfying the 
parallelogram law and the property that every nuclear space is also a 
H-locally convex space with respect to an equivalent system of seminorms 
[13], the above example shows that even in a H-locally convex space a proper  
convex cone may be supernormal without to be well based. Moreover,  if we 
consider in 12 the H-locally convex topology induced by the seminorms 

pn((Xk))=(i~>~nIXil2)I/2~ , h E N *  , ( x ~ ) E l  2 

then the convex cone C 2 = {(x~)E l 2" X~ 9 0  for all k E N)  is normal in the 
H-locally convex space (12, {Pn)nCN*), but it is not supernormal because the 
same sequence (ek) is weakly convergent to zero, while (/Tn(e~)) is con- 
vergent to 1 for each n E N* and one applies Theorem 2.1. Another  
interesting example of normal cone in a H-locally convex space which is not 
supernormal is the usual positive cone in the space 2 Lloc(R ) of all functions 
from R to C which are square integrable over any finite interval of R with the 
system of seminorms {fin: n ~ U*} defined by fin(x) = ( P ,  ]x(t)l 2 dt) 1/2, for 
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every x in Ll2oc(R). In this case, the sequence (xk) given by 

1, 
0 ,  t E (-oo, 0) U ( ~  +oo) 

x~(t) = [ 1]  
x /k ,  t E  0 , ~  

converges weakly to zero but it is not convergent to zero in the H-locally 
convex topology. The result follows again by Theorem 2.1. These examples 
show that, in comparison with the normed spaces or the nuclear spaces, the 
only advantage offered by H-locally convex spaces is that we know the 
expression of linear and continuous functionals in H-locally convex spaces 
which are Fr6chet spaces [10] if we want to study the supernormality in such 
spaces as these (the weak topologies are H-locally convex but, in these cases, 
the supernormality coincides with the normality by Corollary of Proposition 2 
in [8]). We find a characterization of supernormality in H-Fr6chet spaces in 
the following Theorem 2.3. 

9. In the space C([a, b]) of all continuous real valued functions on a compact 
interval [a, b] equipped with the usual supremum norm the convex cone 
K= {x E C([a, b]): x is concave, x(a)= x(b)=0 and x(t)>~O for all t ~  
[a, b]} is supernormal, being well based by every set {x E K: X(to) = 1} for 
some arbitrary t o E [a, b]. The hypothesis that all x E K are concave is 
essential for supernormality. 

10. The convex cone of all nonnegative sequences in the space of all absolutely 
convergent sequences is the dual of the usual positive cone in the space of all 
convergent sequences. Consequently, it has a weak star compact base and 
hence it is weak star supernormal. 

11. In l = or in c o equipped with the supremum norm, the convex cone consisting 
of all sequences having all partial sums non-negative is not normal, hence it is 
not supernormal. 

R E M A R K  2.1. The concept of supernormal cone was defined by G. Isac in [7] 
and the importance of the supernormal cones for the existence of the solutions for 
vectorial optimization problems in locally convex spaces was emphasized for the 
first time in [8] where we also find examples 1-6. As a consequence of the 
scientific cooperation with Professor G. Isac, we completed the list of examples 
given in [7], [8] and so on with other interesting examples and comments. 

R E M A R K  2.2. It is clear that every supernormal cone is pointed and that closure 
of any supernormal cone is also supernormal. On the other hand, if (V, II'll) is a 
normed linear space, then the fact that a convex cone C is supernormal in V 
implies C C_ { v E V: II v II <~ f(v)} for some linear and continuous functional f of V, 
which involves the existence of C-strictly positive linear functionals. The space 
B([a, b]) of all bounded real valued functions on an interval [a, b] with the usual 
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norm and its standard positive cone C = u E B([a,  b]): u(t) >! 0 for all t E [a, b]} 
is an example of nonexistence of C-strictly positive functionals (see the second 
example given in [14], p. 27). Therefore,  this is another example of normal cone 
in a Banach space which does not have a base, that is, which is not supernormal. 
Moreover ,  it is possible even for a normal cone to admit strictly positive linear 
continuous functionals without to be supernormal. This is the case of the usual 
positive cone in LP([a, b]) when p > 1. 

L E M M A  2.1. Every hyperplane which separates strictly the base o f  a well based 

cone and the origin o f  the space is not contained in the cone. 

Proof. Let  K = U n~0 AB be a convex cone well based by a bounded convex 
set B with the property that the origin is not in its closure and H = {x E X: 
f (x )  = c} a hyperplane which separates strictly B and the origin of the space X. 
Then,  the set M = (x  ~ K: f ( x ) / c  = 1) is a base for K (in general, this base is not 
bounded;  it is bounded if X is a reflexive Banach space). By virtue of Proposition 
4 given in [9], the intersection between M and every convex cone having compact 
base and the apex in an arbitrary point, in particular, with any straight line is a 
bounded  set. Thus, if we assume that H is contained in K, then all the straight 
lines of ( 1 / c ) H  are bounded,  a contradiction. The result follows. 

T H E O R E M  2.2. There exists no maximal well based convex cone with respect to 
the inclusion relation. 

Proof. Let  K be a well based convex cone in X, that is, there exists a bounded,  
convex set B with its closure /~ such that 0 ~ / ~  and K = U ,~0 •B. By the 
Classical Separation Theorem in locally convex spaces, there exists a linear and 
continuous functional f ,  e > 0 and c E R such that the hyperplane H = {x E X: 
f (x)  = c) separates strictly {0) and /~, that is, f (x)  <~ c - E, x E B and 0 >/c + e. 
Taking into account Lemma 2.1 it follows that there exists t o E H fq (X~K). Then,  
the closure B 1 of the convex hull of the set/~ U {to} is bounded,  convex, does not 
contain the origin and generates the cone K 1 which contains K. This completes 
the proof.  

R E M A R K  2.3. The proof of Lemma 2.1 was suggested by Professor G. Isac, 

D6par tement  de Math6matiques, Coll6ge Militaire Royal St-Jean Qu6bec, 
Canada. 

If X is a H-Fr6chet  space, that is, the family 9 ~ is countable and every seminorm 
p~(-) is generated by the scalar semi-product ( . - - )~ ,  a E I, then taking into 
account Definition 2.1, Theorem 2.1 of [10] and the results of [5] we obtain the 
following characterization of supernormality through the agency of e-subdif- 
ferential: 

T H E O R E M  2.3. A convex cone K is supernormal in the H-FrOchet space (X, ~ )  
i f  and only i f  for every seminorm p~(.) ,  there exists y~ @ X such that the 
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e-subdifferential o f  p~(.) at the origin o f  the space is contained in the translation o f  
the polar cone to K by the linear and continuous functional (., y~ )t3 for some index 
[3 in I, whenever E >! O. 

3. Existence Results for Efficient Points 

In the conditions of the preceding section, let A be a non-empty subset of X and 

2 E A .  

D E F I N I T I O N  3.1. We say that 2 is an efficient point for A with respect to K, in 

notat ion,  2 E MINK(A),  if A N ( 2 -  K)  = {2}. 

The  first existence result for the efficient points is based on supernormali ty of 
K, the boundedness  and completeness of conical (extension) sections induced by 

non-empty  subsets and the following main theorem of [8]. 

T H E O R E M  3.1. [8]. I f  K is a supernormal cone in a Hausdorff  locally convex 
space E and S is a non-empty subset o f  E having the property that there exists a 

bounded and complete set S o C S with S N (K + x) C_ S o for every x ~ S o, then there 

exists x o E S such that s A (K + x0) = {Xo}. 

R E M A R K  3.1. The proof  of this theorem given in [8] shows in fact that there 

exists at least a critical point for the generalized dynamical system F: S0---~2 s~ 
defined by F(x) = S 7~ (K + x) and hence it suggests the implications of supernor- 

mal  cones for the equilibrium theory in infinite dimensional spaces. 

T H E O R E M  3.2. Let A C B C A + K. I f  K is supernormal and B fl (A  o - K)  is 
bounded and complete for some non-empty set A o C_ A ,  then MINK(A ) v a 0 

Proof. Let  A ' =  B VI(A o -  K)  with AoC_ A such that A'  is bounded and 
complete.  Since A'  A (a '  - K)  C_ A'  for every a '  E A'  by virtue of Theorem 3.1 it 

follows that MINK(A'  ) r 0. But M I N K ( X  ) is contained in MINK(A ). Indeed,  if 
x @ MINK(A'  ) and we assume that x ~ A  then there exist a E A and k in K'x{0) 

such that x = a + k. On the other hand, x = a 0 -  k t with a 0 E A o and k 1 E K, 
therefore  a = x - k ~- a o - (k + kl) .  Consequently,  a E A'  and x - a E / ~ { 0 } ,  a 

contradiction. Hence  MINK(A'  ) C A. 
Suppose now that there exists x E MINK(A')kMINK(A ). Then,  there exists 

a~ E A such that x - a ] E  K'x{0}. Therefore  a 1 E x - -  K C_ A 0 - K and a I E A C_ B, 
that is, al E A',  a contradiction. Consequently,  MINK(A'  ) r 0 and M I N K ( X  ) C_ 

MINK(A).  

R E M A R K  3.2. The proof  of  the above theorem shows that if K is supernormal  
and A C/(a - K)  or (A + K) 71 (a - K)  is bounded and complete for some s E A, 
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then MINK(A ) r r When this boundedness and completeness proper ty  holds for 

every a E A,  that is, every section or conical section of A is bounded and 

complete ,  then A C_MIN~;(A)+ K. This inclusion is very useful to establish 
propert ies  for the sets of efficient points (Theorem 3.3) and for duality theory in 
vectorial  optimization programs with objective maps multifunctions [16]. Also we 
must  remark  that,  in general, the uniqueness of the efficient points is unusual. 

Excepting the trivial cases, it seems to hold only in strong optimization problems 
under  proper  conditions. 

C O R O L L A R Y  3.2.1. I r A  is a non-empty ,  bounded  and closed subset o f  X and K 

is well based by a complete set, then MINK(A ) r ~t and A C_ MINK(A ) + K. 
Proof.  Since A is bounded and K is supernormal  (Proposition 5 of [8]), by 

T h e o r e m  3.2 it is sufficient to prove that every section of A with respect to K is 
complete .  Let  a E A be an arbitrary element  and let (aj)]E J be a Cauchy net in 

A • (a - K).  Because K is well based by a complete set, there exists a non-empty,  
convex, bounded  and complete set B such that 0 ~ B and K = L_) A~0 AB. Hence,  
for each a~ ( j  E J ) ,  there exist hi~>0 and bj E B with aj = a -  hjbj.  Therefore ,  

(h ib j ) j~  ] is a bounded Cauchy net. Since the set B is closed, bounded and 0 ~  B, 
there exists a convex and closed neighbourhood V of the zero element  in X and 

a > 0 such that V D B = 0 and B C_ a V. If p~ is the Minkowski functional of V, 
then 1 ~< pv(b)  <~ a for every b E B and there exists M/> 0 with hj <~ Pv(h jb j )  <~ M 

for all hi, that is, (h j ) je ]  is bounded.  When (hj)~E ] contains at least a subnet 
convergent  to zero,  then it is clear that ai tends to a; otherwise, because it is 

bounded,  we can find a subnet (As)so s convergent to h 0 > 0 .  Since (as),~ s is a 
Cauchy net, (b,)~c s is a Cauchy net on B. Therefore  (b , )se  s converges to b 0 E B 
and (s~)~e s is convergent to a - h o b  o which implies that (aj)jc ] converges to 

a - hob 0. 

R E M A R K  3.3. Because in a Hausdorff  locally convex space a pointed cone is 
locally compact  if and only if it has a compact  generating base, the conclusion of 

the above corollary remains valid whenever  the cone K is closed and locally 
compact .  

R E M A R K  3.4. If  K is normal and A C X is bounded,  then [A] = (A + K)FI  
(A - K)  is bounded.  Indeed,  let O be a neighbourhood basis of the origin in X 

such that  [V] = V, VV E O. Because A is bounded,  for every V E O, there exists 
h > 0 such that A C_ AV, which implies A + K C_ AV + K = A(V + K) and A - K C_ 
A V - K = A ( V - K ) ,  that is, [A] C_ h(V + K) D A ( V - K ) = A [ V ] - A V  and the 
result follows. 

D E F I N I T I O N  3.2. A non-empty set B C X is K-bounded if there exists a 
bounded  set B 0 C X such that B C_ B 0 + K and B is said to be K-closed if its 
conical extension B + K is closed. 
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R E M A R K  3.5. For all we know compactness is the strongest demand on a given 
non-empty set concerning with the existence of the efficient points, so if we want 
to obtain existence results in a less restrictive class of non-empty sets, we must 
impose adequate conditions on the cone. Also the results of this paper show that 
such a hypothesis as this is the supernormality. It is clear that for a non-empty set 
to be compact is more restrictive than to be K-bounded and K-closed. Several 
properties of cone-bounded and cone-closed sets in infinite dimensional spaces we 
find in [12]. 

In the following theorem we assume that X is quasi-complete that is, every 
non-empty, bounded and closed subset is complete, and K is closed and super- 
normal. 

T H E O R E M  3.3. (i) For every non-empty K-bounded and K-closed subset A we 

have MINK(A ) # 0 and A C_ MINK(A ) + K; 
(ii) i f  the set B A (A  o - K)  is K-bounded and K-closed for  some non-empty sets 

B and A o with A C B C A  + K and A oC_A, then M I N K ( A  ) # 0 ;  
(iii) for  every K-bounded and K-closed set A C X ,  MINK(A ) + K = A + K and 

MINK(A ) is K-bounded and K-closed; 

(iv) for  every K-bounded and K-closed subsets A ,  B we have: 

MINK(A + B) C MINK(A ) + MINK(B ), MINK(A + B) 

= MINK[MINK(A ) + B] 

= MINK[A + MINK(B)] 

= MINK[MINK(A ) + MINK(B)] and MINK(A U B) 

= MINK[MINK(A ) U MINK(B)]; if, in addition, A C B,  then 

MINK(A ) C MINK(B ) + K; 

(v) i f  K1, K 2 are two closed and supernormal cones in X and A is a K 1, 

KR-bounded and K 1, K2-closed subset, then 

MINK,(A ) 71 MINK2(A ) = MIN . . . .  (K,UKz)(A) " 

Proof. (i) In the conditions of theorem, every conical extension section of A is 
bounded and closed and the result follows by Theorem 3.2 and Remark 3.2. (ii) is 
a consequence of (i). (iii)-(v) are based on the inclusion A C MINK(A ) + K for 
every K-bounded and K-closed subset A. 

R E M A R K  3.6. Simple examples show that the above inclusion is not valid, in 
general, even if MINK(A ) is non-empty and X is an usual Euclidean space. On 
the other hand, even when X is quasi-complete and A is K-bounded and K-closed 
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the equality A = MINK(A ) + K is equivalent with A = A + K and hence it holds 
in some special cases which depend only upon the structure of the set A and the 
cone K. For  example, if A is bounded and K-closed, then the equality A = 
MINK(A ) + K is impossible because A + K is, generally, unbounded.  Therefore ,  
even in these cases, the inclusion A C_ MINK(A ) + K will be strict. Other  exist- 
ence results for the efficient points and connections with the conically bounded 
sets may be found in [15]. Also we must to specify that the notion of conically 
bounded set does not coincide, in general, with the concept given by Definition 
3.2 of this paper. It was considered for the first time in Banach spaces by Bourgin 
[3] with applications in the study of reflexivity and in locally convex spaces by Isac 
[9] to examine the global minimization of a nonlinear functional on a convex 
cone. 

R E M A R K  3.7. Generally,  the study of solutions for vectorial optimization 
problems, in particular, of the efficient points has been made using Zorn's  lemma 
in order  to establish existence theorems (see, for instance, [2], [4], [11]), by 
reducing them to scalar optimization problems and afterwards one applies known 
results from scalar optimization theory ([2], [6], [11] and other connected papers) 
or by the aid of the duality theory for vectorial optimization programs with 
objective maps multifunctions [16]. In this paper our approach is much different 
because it does not depend upon the finite dimensionality of the space, the 
compactness of the set for which we search the efficient points or the usual 
restriction that the cone has non-empty (relative) interior. 

R E M A R K  3.8. In [18] was defined the largest class ~ of convex cones ensuring 
the existence of the efficient points in compact sets: if V is a Hausdorff  topological 
vector space, a convex cone C belongs to cr when for every closed vector subspace 
L of V, C N  L is a vector subspace whenever its closure C('I L is a vector 
subspace. From Theorem 3.2 together with the maximality property of cr or by 
the considerations below, it follows that in every Hausdorff  locally convex space 
any supernormal cone belongs to % Indeed, let V be an arbitrary Hausdorff  
locally convex space with the topology generated by the family ~ = { qs: s C S} of 
seminorms and C C V a supernormal cone. The definition of supernormality does 
not include the assumption that the cone C is closed. It is clear that if we assume 
that C is closed, then automatically C E ~. If we do not suppose that C is closed, 
then the answer is the same, but it requires some calculations: for every qs ~ -~ let 
us denote  the linear and continuous functional given by the definition of supernor- 
mality with fs. Then,  we have C C_ (-Iqse~. ~ {U ~ V: q,(v) ~< f,(v)} = C 1. Since q, and 
f,(s E S) are continuous, we conclude that C 1 is a closed, convex cone and 
therefore  ~"C_ C I. But C t is also pointed because if x, - x E  C1, then 0<~ 
qs(x) + qs(-x)<~fs(X ) + f ~ ( - x ) = 0  for all q, E-~ .  Since V is a Hausdorff  topo- 
logical vector space, we must have x = 0. Hence C is a convex cone whose closure 
is pointed and by virtue of Remark 2.2 given in [18] it follows that C ~ % 
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